・封面文章・

基于阵列透镜和光纤集束的调频脉冲波形测试技术

张波**,彭志涛*,孙志红,夏彦文,卢宗贵,董军

中国工程物理研究院激光聚变研究中心,四川 绵阳 621900

摘要提出了一种基于阵列透镜和渐变多模光纤集束的调频脉冲测试方法,该方法通过渐变折射率多模光纤提供 较大的接收孔径,通过子孔径拼接方式取样降低取样光斑在光纤端面的漂移,两者相结合可实现光束近场能量到 光纤集束的高效稳定耦合。该方法中的渐变多模光纤集束可携带更多的取样光能量,有利于脉冲的高对比度测 量。实验结果表明,本技术方案能够实现调频脉冲光束整体时间特性的保真测量,测量对比度可达 630:1。 关键词 激光光学;波形测量;阵列透镜;光纤集束;耦合效率;对比度 中图分类号 TN247 **文献标志码** A **doi:** 10.3788/CJL202047.0301004

Frequency-Modulated Pulse Waveform Measurement Based on Lens Array and Fiber Bundle

Zhang Bo**, Peng Zhitao*, Sun Zhihong, Xia Yanwen, Lu Zonggui, Dong Jun Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China

Abstract This study proposes a method based on lens array and fiber bundle for measuring frequency-modulated pulse waveforms. Grade-index fiber can provide a large receiver aperture that allows optimum laser energy transmission and performing measurements a wide dynamical range. Lens array can decrease the drift of laser spot on the fiber end face. Combining these two benefits, the system will have a high transmission efficiency from the laser near field to the fiber bundle. Results indicate that the proposed method can perform high-accuracy measurements of frequency-modulated pulse waveforms, with the measurement contrast ratio reaching 630:1. **Key words** laser optics; waveform measurement; lens array; fiber bundle; coupling efficiency; contrast ratio **OCIS codes** 140.3295; 120.3620; 060.2310; 140.3325; 140.3300

1引言

在高功率激光装置中,脉冲波形的准确测量对 于装置输出性能评估和物理实验数据分析具有重要 意义。在激光装置中,为抑制横向受激拉曼散射和 进行远场光谱色散匀滑,通常采用有一定光谱宽度 的调频小带宽脉冲作为种子光源^[1-2];在调频脉冲长 程传输过程中,由于光路中各种扰动因素的存在(透 过率不均匀及法布里-珀罗效应等),光束近场各点 的时间波形存在一定差异,此时光束的整体时间特 性可用光束近场截面上各点时间波形的积分来表 示。为了实现对调频小带宽脉冲时间波形的准确测 量,测量时的近场取样比例应尽可能高,以消除奇异 点对总体测量结果的影响^[3-4];此外,高功率激光波 形前沿与主峰的对比度可达 500:1及以上^[5-6],为保 证在示波器上能够准确分辨出前沿信号,脉冲的主 峰信号强度需达到 5 V及以上。为实现这一目的, 可采用光束聚焦后直接进入大口径真空光电管的方 式,但该方法存在建设成本高、时分复用困难和信号 传输易受电磁干扰等问题。传统的透镜耦合单模光 纤测量方式虽然建设成本低、抗电磁干扰能力 强^[7-8],但近场耦合效率低,所得测量结果难以反映 光束近场的整体时间波形,且光纤所能携带的能量 小,利用该方式难以实现脉冲的高对比度测量;透镜 耦合单根超大芯径(425 μm 及以上)高带宽光纤测 量方式虽能实现脉冲的高对比度准确测量,但所用 光纤需同时满足超大芯径、长距离高带宽传输两个 条件,从而导致光纤的研制、加工极为困难,影响波

收稿日期: 2019-08-13; 修回日期: 2019-09-23; 录用日期: 2019-10-18

基金项目:国家自然科学基金(61605185)、中国工程物理研究院激光聚变研究中心青年人才成长基金(RCFCZ-2017-12) * **E-mail**: peng_zhitao@163.com; ** **E-mail**: zhangbo19880331@sina.com

形测量系统建设的时间成本和经济成本[9]。

为了解决调频脉冲准确测量的问题,并降低波 形测量系统建设的成本,本文提出了一种基于阵列 透镜和渐变多模集束光纤的高功率激光装置调频脉 冲测量方法。激光脉冲经透镜阵列取样耦合到光纤 集束中,长程传输后的取样光脉冲通过真空光电管 完成光电转换;示波器记录光电管输出的电信号,完 成单路脉冲波形的测量;通过控制光纤集束的长度 实现多路波形的并束时分复用测量。该方法采用新 变多模光纤作为传输介质以提供较大的接收口径, 通过子孔径拼接方式取样以降低取样光斑在光纤端 面的漂移量,两者相结合可使光束近场能量高效稳 定地耦合到光纤集束中,实现光束近场整体时间特 性的高对比度保真测量。此外,该方法可通过时分 复用减少探测器和示波器的使用数量,使系统的建 设成本降低,抗电磁干扰能力增强。

2 测试技术与方法

2.1 调频小带宽脉冲时间波形特性

在高功率激光装置中,通常使用正弦相位调制 的调频小带宽脉冲作为种子源,其时间波形表达 式为

$$E(t) = \exp\left[-\frac{1}{2}\left(\frac{t}{t_0}\right)^{2m}\right] \times$$

 $\exp [i 2\pi \nu_0 t + i M \sin(2\pi \nu_m t)]$, (1) 式中:m 为超高斯阶数;t₀ 为脉冲 1/e 脉宽;E(t)表 示随时间变化的脉冲强度,即时间波形; ν_0 为脉冲 光谱的中心频率; ν_m 为相位调制器的调制频率。将 (1)式进行傅里叶变换,得到的脉冲光谱为

$$\widetilde{E}(\nu) = \widetilde{E}_{0} \sum_{k=-\infty} A(k, M) \cdot \delta(\nu - k\nu_{m} - 2\pi\nu_{0}),$$
(2)

式中: $\tilde{E}(\nu)$ 为随频率变换的频谱成分的幅值; M 为 相位调制深度; k 为光谱级次; A(k, M)为光谱幅度 包络; \tilde{E}_{0} 为光谱幅度包络的最大幅值; δ 为单位冲 击响应函数。典型的调频脉冲光谱分布如图 1 所示 (0.3 nm 带宽)。

调频小带宽脉冲在光路中长程传输放大时,由 于光路中存在不均匀的弱法布里-珀罗腔效应、阵列 器件光谱透过率不均匀等因素,光路近场不同点处 的光谱透过率存在差异,进而导致近场不同点处的 时间波形存在差异。在光路近场4个不同的空间点 处直接使用单模光纤进行点取样得到的时间波形如 图2所示,其中第1、2、4点波形较为接近,第3点波

Fig. 1 Spectrum of frequency modulation smallbandwidth pulse (0.3 nm bandwidth)

形与其他点波形的差异较大。因此,要获得近场口 径内光束的准确时间特性,波形测量系统近场到光 纤的耦合效率应尽可能高,这样才能消除奇异点对 脉冲波形整体时间特性测量结果的影响。

图 2 调频脉冲光束近场不同点的时间波形

Fig. 2 Time waveforms of different points in near field of the frequency modulation pulse beam

2.2 单透镜耦合单模光纤波形测试技术

平行光光束经透镜会聚到光纤端面上,耦合效 率 η 由光纤端面上的光场 E(x,y) 和光纤模场 M(x,y) 的重叠积分给出^[10-13]:

$$\eta = \left| \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} M(x,y) E(x,y) dx dy \right|^{2}$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |E(x,y)|^{2} dx dy \cdot \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |M(x,y)|^{2} dx dy$$

$$100 \%. \qquad (3)$$

单模光纤端面的模场分布 *M*(*x*,*y*)为高斯分布,可表示为

 $M(x,y) = \sqrt{2/\pi} M_0 \exp[-(x^2 + y^2)/w_s^2],(4)$ 式中: M_0 为模场中心点的复振幅分布; w_s 为单模光 纤模场半径,可表示为

 $w_s = (0.65 + 1.619/V^{3/2} + 2.879/V^6)a$, (5) 式中:a 为光纤纤芯半径; $V = (2\pi a/\lambda)NA$ 为归一 化频率,NA 为光纤的数值孔径, λ 为激光波长。

高功率激光装置中传输的光束为方形超高斯光 束,其衍射场的表达式为

$$E(x,y) = E_0 \frac{\sin^2 \beta}{\beta^2}, \qquad (6)$$

式中: $\beta = \frac{\pi b x}{\lambda f_s}$, b 为光束直径, f_s为单透镜焦距; E₀ 为光束衍射场中心点的振幅。

高功率激光装置主体传输光路中的光束直径较大,在测量光路中,通常需要将光束缩束至 7~8 mm,以便于进行取样测量。在激光装置中,主体传输光路中的光束直径为 360 mm,角漂为 2.5 μ rad,取波形测量光路中的光束直径 b = 7.5 mm,根据 M^2 因子不变定律,此时取样光束的角 漂 $\theta = 120.0 \mu$ rad。

采用单模光纤(NA=0.12)作为传输介质时,为 保证透镜聚焦角度与光纤数值孔径匹配,通常取透镜

的 F 数 为 4.17。取样透镜的直径 D 至少为 7.5 mm×1.414=10.605 mm,则透镜焦距 $f_s = D ×$ F = 44.17 mm,光纤端面光束漂移范围 $\Delta r = \theta × f_s =$ 120.0 µrad×44.17 mm=5.3 µm。在同一坐标系下, 被测光束的衍射场 $E^2(x,y)$ 分布如图 3(a)所示,单 模光纤模场 $M^2(x,y)$ 分布如图 3(b)所示。从图 3 中 可以看出,光纤耦合场强区已脱离透镜的衍射场强 区。根据(3)式计算得到耦合效率 η 约为 5.912%(其 中 1052.92 nm 波长 耦 合 效 率 为 5.91396%, 1052.62 nm波长耦合效率为5.91020%,取平均值为 5.912%),近场取样份额较少,所得测量结果无法准 确反映光束近场的整体时间特性。

图 3 单模光纤耦合时的场分布。(a)衍射光场分布;(b)光纤模场分布

Fig. 3 Field distributions of single-mode fiber coupling. (a) Diffraction field; (b) fiber mode field

此外,在测量纳秒脉冲时,光纤中取样光能量过 强可能会产生受激拉曼散射,从而导致取样光能量 损耗和脉冲波形畸变。为了满足以束组为单位进行 时分复用的需求(4~8 束光为一束组),当单路脉冲 测量窗宽为 60 ns 时,光纤的传输长度需要达到 100 m以上。在此情况下,单模光纤所能承受的非 线性阈值为 3~5 W^[14-16],仅能搭配响应较为灵敏的 半导体探测器使用,而带宽达到 6 GHz 以上的半导 体光电管的输出幅值通常小于 1.5 V,无法满足高 对比度测试的需求。

2.3 基于阵列透镜和光纤集束的调频脉冲测试技术

为了实现调频脉冲高对比度保真测量,提出了 一种基于阵列透镜取样和渐变折射率多模光纤传输 的波形测试方法。该方法采用阵列透镜进行取样, 采用渐变折射率多模光纤集束进行光传输,其系统 原理图如图4所示。光路A束组中任一光路的光

束经一个 3×3 排布的微透镜阵列耦合进光纤集束 中并长程传输到真空光电管,真空光电管完成被测 光束的光电转换后将输出电信号传入功率分配器和 示波器,示波器记录光电管的输出信号并完成该路 激光脉冲波形的测量,通过控制光纤集束的长度实 现多路光束的时分复用测量。

相较于单个透镜整体取样,采用阵列透镜子孔 径拼接方式进行取样时,光纤之前的取样透镜的直 径迅速缩小,在保持透镜 F 数始终与光纤数值孔径 相匹配的前提下,透镜的焦距 f 也迅速减小。光纤 端面光斑的漂移量 Δr 为光束角漂 θ 与透镜焦距 f的乘积,f 减小,则 Δr 随之减小,有利于光束到光 纤的高效稳定耦合。根据此规则,透镜阵列中微透 镜的个数越多,光纤端面的光束角漂越小,耦合效率

越高;但在保持各透镜光轴高平行度(不平行度 《2 mrad)的前提下,透镜数越多,透镜阵列的装配 就越困难,成品率也就越低。结合波形测量系统建 设的实际性能需求和成本限制,选择 3×3 阵列透镜 进行取样,阵列透镜中每个透镜子单元的直径 d =1.8 mm,焦距 f = 5 mm,固定在标准 2.8 mm 直径 的玻璃套管前端(玻璃套管彼此紧密相接),透镜阵 列与直径为 7.5 mm 的入射光束的位置关系如图 5 (b)所示,透镜阵列实物如图 5(a)所示。

光纤集束所用光纤为武汉长飞公司超贝 OM5 型渐变折射率光纤,光纤内部折射率为梯度分布,不 同入射角的光线具有相同的轴向传播速度,模式色 散很小,其带宽为13.6 GHz,光纤芯径 *a* 为 50 μm, 数值孔径 NA=0.2。

图 5 阵列透镜。(a)阵列透镜实物图;(b)阵列透镜排布及与光束的位置关系

Fig. 5 Lens array. (a) Lens array object; (b) position relation between lens array and measured beam

渐变折射率光纤端面的模场分布 M(x,y)近似 为高斯分布,表示为

$$M(x,y) = \sqrt{2/\pi} M_0 \exp[-(x^2 + y^2)/w_{\rm m}^2],$$
(7)

式中:w²_m为多模光纤的模场半径,可表示为

$$w_{\rm m} = (0.65 + 1.619/V^{3/2} + 2.879/V^6)a$$
。(8)
圆形微透镜的衍射场可表示为

$$E(x,y) = E_0 \frac{2J_1(\Phi)}{\Phi}, \qquad (9)$$

式中:J₁为一阶贝塞尔函数; $\Phi = \frac{\pi d \sqrt{x^2 + y^2}}{\lambda f}$;E₀为 微透镜衍射场中心的场振幅。

本方案中的微透镜焦距 f 为 5 mm,光纤端面 光束漂移量 $\Delta r = \theta \times f = 120.0 \ \mu rad \times 5 \ mm =$ 0.6 μ m,远小于单透镜整体取样时 5.3 μ m 的光束漂 移量。在同一坐标系下,每个微透镜取样口径内光 束的衍射场 $E^2(x,y)$ 的分布如图 6(a)所示,渐变多 模光纤的模场 $M^2(x,y)$ 的分布如图 6(b)所示。根 据(3)式计算得到单个微透镜到光纤的耦合效率 $\eta_1 = 93.052\%$ (其中 1052.92 nm 处的耦合效率为 93.0510%,1052.62 nm 处的耦合效率为93.0528%, 取平均值为93.052%),阵列透镜接收面积与光束总 面积的占空比 $K = 9 \times \pi \times 0.9^2/7.5^2 = 0.407$,则总耦 合效率 $\eta = K \times \eta_1 = 37.87\%$,显著高于单模光纤的 耦合方式。

光纤的受激拉曼散射阈值与光纤的模场面积成 反比,芯径为 50 μ m 的多模光纤的受激拉曼散射阈 值明显高于单模光纤,从而可携带更多能量,以激励 大口径真空光电管,满足脉冲高对比度测试的要求。 在不同的输入功率下,5 ns 平顶方波经单根长为 125 m、芯径为 50 μ m 的 OM5 型光纤传输,使用大 口径真空光电管测得的波形如图 7 所示。由图 7 可 知,光纤的非线性阈值约为 110 W(0.55 μ J/5 ns= 110 W),此时真空光电管的输出幅值为 854 mV,9 芯光纤集束的最大保真输出幅值可达 0.854×9= 7.69 V。

图 6 微透镜阵列耦合时的场分布。(a)微透镜取样口径内的衍射光场分布;(b)渐变多模光纤的模场分布 Fig. 6 Field distributions of microlens array coupling. (a) Distribution of diffracted light field in sampling aperture of microlens; (b) mode field distribution of graded multimode fiber

Fig. 7 Nonlinear effect test results of OM5 fiber

3 实 验

为对本文技术方案进行验证,搭建了如图 8 所 示的实验光路,调频脉冲光束经分光镜分为两部分, 含有 55%能量的光束经阵列透镜和光纤集束进入 真空光电管 1,含有 45%能量的光束经反射镜和一 聚焦透镜进入真空光电管 2,真空光电管 1 和真空 光电管 2 的输出信号由同一高速示波器检测记录, 通过比较两者的测量结果对阵列透镜耦合光纤集束 测量方案的波形保真能力进行验证,实验所用真空 光电管 1、真空光电管 2 均为滨松 R1328,光敏面直 径为 10 mm,模拟带宽为 6 GHz;所用数字示波器 模拟带宽为 8 GHz,采样率为 40 GSa/s,输入光束 直径为 7.5 mm。

实验结果如图 9 所示,在不同的输入波形下,阵 列透镜耦合光纤集束取样测量得到的时间波形均与 近场全口径聚焦取样测量得到的波形一致,表明该 技术方案可实现光束近场整体时间特性的保真测 量。实验中光电管 1 的输出幅值为 6.30 V,如使用 功分器将此信号分为两路,则单路幅值为 3.15 V, 示波器能够明显分辨识别的最小信号幅度约为 5 mV,波形保真测量的对比度为 630:1,满足 500:1 高对比度脉冲测试要求。

实验中进入阵列透镜的光束的能量为 14.1 μJ, 阵列透镜各透镜子单元后的光纤输出能量如表 1 所 示,总耦合效率为 4.430/14.1×100%=31.4%,与 理论模拟结果相近,两者之间存在差异主要是因为 透镜、光纤的表面反射,以及微透镜的光轴间存在微 弱的不平行。

4 结 论

本文提出了一种基于阵列透镜和光纤集束的高 功率激光装置脉冲同步测试方法,该技术方案使用 渐变折射率多模光纤提供更大的接收孔径,通过

图 8 调频脉冲波形测量方案验证实验原理图

Fig. 8 Schematic of verification experiment of frequency modulation pulse waveform measurement scheme

图 9 调频脉冲波形测量方案验证实验结果。(a)输入波形无幅度调制;(b)输入波形有幅度调制

Fig. 9 Verification results of frequency modulation pulse waveform measurement scheme.

(a) Input waveform without amplitude modulation; (b) input waveform with amplitude modulation

表1 阵列透镜耦合效率测试结果

Fable 1 Coupling	efficiency	test	results	of	lens	array
------------------	------------	------	---------	----	------	-------

No.	1	2	3	4	5	6	7	8	9	Total
Output /µJ	0.474	0.494	0.492	0.501	0.484	0.497	0.499	0.503	0.486	4.430

阵列透镜子孔径拼接取样方式降低光斑在光纤端面 的漂移量,两者相结合,光束近场到光纤集束的耦合 效率可达30%以上;此外,光纤集束可携带更多的 能量以驱动光电探测器完成脉冲高对比度测量。实 验结果表明,本技术方案可实现调频脉冲光束近场 整体时间特性的保真测量,脉冲波形测量对比度可 达630:1。本技术方案的理论及实验结果为高功率 激光装置波形测量系统的建设提供了支撑。

参考文献

- [1] Liao B. Theoretical study of FM to AM issue on ICF facility [D]. Shanghai: University of Chinese Academy of Sciences, 2006: 50-51.
 廖波.高功率激光装置中幅度调制效应的研究[D]. 上海:中国科学院大学, 2006: 50-51.
- [2] Liu L Q, Zhang Y, Geng Y C, et al. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system[J]. Acta Physica Sinica, 2014, 63 (16): 164201.

刘兰琴,张颖,耿远超,等.小宽带光谱色散匀滑光 束传输特性研究[J].物理学报,2014,63(16): 164201.

 [3] Sun Z H, Dong J, Xia Y W, et al. Temporal profile measurement of frequency modulation beams for high power laser facility [J]. Chinese Journal of Lasers, 2013, 40(11): 1102009.

孙志红,董军,夏彦文,等.高功率激光装置调频脉 冲时间波形测试技术研究[J].中国激光,2013,40 (11):1102009.

[4] Li L, Zhang B, Xia Y W, et al. Pulse temporal

profile measurement technology of frequency modulation based on self-focusing lens coupling optical fiber sampling for high power laser facility [J]. Chinese Journal of Lasers, 2017, 44 (5): 0504002. 李磊,张波,夏彦文,等.基于自聚焦透镜耦合光纤 取样的高功率激光装置调频脉冲时间波形测量技术

[J]. 中国激光, 2017, 44(5): 0504002.

 [5] Leng Y X. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100001.
 冷雨欣.上海超强超短激光实验装置[J].中国激光,

(冷雨瓜, 上海超速超湿湿元头短装直[J], 中国湿元, 2019, 46(1): 0100001.

- [6] Kong X, Yan S S, Yu J W, et al. Reliability analysis of pulse width measurement in parameter measurement of petawatt-class laser [J]. Chinese Journal of Lasers, 2017, 44(11): 1104001.
 孔雪, 闫世森, 于健伟, 等. 拍瓦级激光参数测量中 脉宽测量可靠性分析[J]. 中国激光, 2017, 44(11): 1104001.
- [7] Lu Z G, Xia Y W, Tang J, et al. Pulse-shape measurement technology for multi-beams infrared laser[J]. Infrared and Laser Engineering, 2011, 40
 (6): 1129-1132.
 卢宗贵,夏彦文,唐军,等.多路红外激光脉冲波形 测量技术[J]. 红外与激光工程, 2011, 40(6): 1129-1132.
- [8] Xia Y W, Sun Z H, Zhao R C, et al. Improvement of infrared temporal profile measurement system for SG-Ⅲ prototype laser facility[J]. Infrared and Laser Engineering, 2012, 41(6): 1453-1457.
 夏彦文,孙志红,赵润昌,等.神光Ⅲ原型装置红外 脉冲波形测量系统的研制[J]. 红外与激光工程,

2012, 41(6): 1453-1457.

- [9] Ermolaeva G M. Low-dispersion optical fiber highly transparent in the UV spectral range [J]. Optical Engineering, 2004, 43(12): 2896-2903.
- [10] Xiao Z G, Li B C. Single-lens coupling efficiency of a fundamental Gaussian beam to an optical fiber [J]. Opto-Electronic Engineering, 2008, 35(8): 29-34. 肖志刚,李斌成. 高斯光束到光纤的单透镜耦合[J]. 光电工程, 2008, 35(8): 29-34.
- [11] Zhang S Q, Zhang Z, Cai L, et al. Laser injecting method from free space beam to single-mode fiber using single lens[J]. High Power Laser and Particle Beams, 2014, 26(3): 031006.
 张世强,张政,蔡雷,等.基于单透镜的空间光-单模

光纤耦合方法[J]. 强激光与粒子束, 2014, 26(3): 031006.

- [12] Hirooka T, Hori Y, Nakazawa M. Gaussian and sech approximations of mode field profiles in photonic crystal fibers [J]. IEEE Photonics Technology Letters, 2004, 16(4): 1071-1073.
- [13] Chen X K, Zhang L, Wu Z Y. Coupling efficiency of free-space laser coupling into single mode fiber and photonic crystal fiber [J]. Chinese Optics, 2013, 6 (2): 208-215.

陈雪坤,张璐,吴志勇.空间激光与单模光纤和光子 晶体光纤的耦合效率[J].中国光学,2013,6(2): 208-215.

- [14] Tang Q, Yang L, Guo Y J, et al. Research of sampling and propagating characteristics of high power ultraviolet nanosecond laser pulse[J]. Chinese Journal of Lasers, 2013, 40(9): 0905006.
 唐清,杨琳,郭亚晶,等.高功率紫外纳秒激光脉冲 的光纤取样传输特性研究[J].中国激光, 2013, 40 (9): 0905006.
- [15] Yang Y H, Yang W, Jiang T, et al. Investigation on characteristics of stimulated Raman threshold in a single mode fiber[J]. Acta Optica Sinica, 2014, 34 (1): 0129001.
 杨远洪,杨巍,蒋婷,等. 单模光纤中受激拉曼散射的阈值特性研究[J].光学学报, 2014, 34(1): 0129001.
- [16] Sun L Y, Huang M S, Huang J F, et al. Research on SBS threshold in single-mold fiber[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2013, 21(2): 9-12.
 孙丽妍,黄民双,黄军芬,等.单模光纤 SBS 阈值的 研究[J].北京石油化工学院学报, 2013, 21(2): 9-12.